
Design and Implementation of an Extensible and Modifiable Refactoring Tool

Katsuhisa Maruyama
Department of Computer Science

Ritsumeikan University
1-1-1 Noji-higashi Kusatsu

Shiga 525-8577, Japan
maru@cs.ritsumei.ac.jp

Shinichiro Yamamoto
Department of Information Systems

Aichi Prefectural University
1522-3 Ibaragabasama Kumabari Nagakute-cho

Aichi-gun Aichi 480-1198, Japan
yamamoto@ist.aichi-pu.ac.jp

Abstract

Refactoring is an essential and useful practice in devel-
oping and maintaining object-oriented software since it im-
proves the design of existing code without changing its ex-
ternal behavior. Therefore, several refactoring tools tend
to be integrated into contemporary IDEs. However, these
tools represent source code as an abstract syntax tree (AST)
and thus their implementations are hard to extend and mod-
ify. This paper presents Jrbx, a refactoring tool that uses a
fine-grained XML representation of source code and sup-
ports stylized manipulations of the representation. More-
over, Jrbx aggressively exploits control flow graphs (CFGs)
and program dependence graphs (PDGs) for both precon-
dition checking and change creation. The use of the XML,
CFG, and PDG representations makes the implementation
of Jrbx more understandable and reusable, and thus facili-
tates tool developers creating new refactorings and modify-
ing existing ones.

1. Introduction

Source code understanding is one of essential activ-
ities in software maintenance. Refactoring [21, 7, 19]
helps maintainers (or programmers) to understand unfamil-
iar code written by others since it improves the readability
of the code without changing its observable behavior. A
refactoring tool is particularly useful for increasing compre-
hensibility of such code. The tool allows the maintainers to
actually change the code to reflect their ideas how the code
works, and lets them view different code having the same
behavior as before. In other words, the maintainers can ob-
tain experimental code to verify their understanding of the
original code. If they want to see other experimental code,
they can undo applied refactorings (or restore the original
contents by using a copy of the original code).

An automated refactoring tool partially frees program-
mers from tedious checks and careful modifications of

source code [9, 24]. Therefore, contemporary integrated
development environments (IDEs) tend to include a refac-
toring tool (or browser). Almost all tools provide many
primitive refactorings (e.g., RENAME or MOVE) and some
of them support a bit more complex refactorings (e.g., EX-
TRACTMETHOD). However, each transformation of the ex-
isting tools is fixed, that is, its variety is limited.

In the absence of a full cover of every refactoring that
programmers want to support, it is desirable that a refactor-
ing tool is extensible and modifiable. However, almost all
conventional tools are not interested in how tool developers
create new refactorings or modify existing ones. Although
pluggable mechanisms (e.g., plug-ins or wizards) have been
typically successful to make it easier to add new refactor-
ings or remove existing refactorings, these mechanisms are
inadequate for the purpose of extending or modifying the
functionality of provided refactorings. For example, the
processor/participant architecture of Eclipse [5] allows a
developer to freely register processors and participants per-
forming a refactoring by editing XML-based settings. How-
ever, he/she can not easily reuse or change parts of the pro-
cessors or participants since their implementations are not
exposed as application programming interfaces (APIs). For
a refactoring tool to be truly extensible and modifiable, it
should be implemented so that the developers can obtain
fine-grained and sufficient information about source code
in easy-to-use and easy-to-extend manners. Additionally, it
is crucial that they can freely manipulate actual source code
or the contents of a representation reflecting it.

This paper presents Jrbx, a refactoring tool that uses a
fine-grained and extensible representation of source code
and supports standardized and stylized manipulations of the
representation. Jrbx builds on the Sapid/XML tool plat-
form [15] that manages source code by using the extensible
markup language (XML) [29]. An XML document con-
verted from source code involves fine-grained information
resulting from both syntactic and semantic analysis. There-
fore, the developers of refactoring tools can build mod-

ules for checking preconditions and creating changes by
using existing XML processors and trivial wrappers (high-
level APIs for accessing XML documents) provided by the
platform. Moreover, as compared with an abstract syntax
tree (AST) [1], the XML representation is suitable for stor-
ing information specific to each refactoring since the de-
velopers can easily define new tags and/or attributes (al-
though the extension needs a simple consistency check for
a new XML schema). In most cases, the new tags and at-
tributes are processed by only additional modules and ig-
nored in the remaining modules of the original implemen-
tation. That is, the required modification is minimized. The
effort to learn XML elements (tags and attributes) and stan-
dard XML APIs might be the same as to learn AST elements
and proprietary APIs since the structure of our use of XML
is similar to that of the AST and tag names are based on
programmers’ view as well as srcML [14].

In addition to the introduction of the XML represen-
tation, Jrbx aggressively utilizes a control flow graph
(CFG) [1] and a program dependence graph (PDG) [6] to
check whether semantic conditions are satisfied and to de-
termine which code fragments will be changed. Although
ASTs contain sufficient information needed to automate
various kinds of refactorings, it is worth exploiting CFGs
and PDGs since they are sophisticated and understandable
representations of control and data flow lurking in source
code. Both queries and manipulations using such represen-
tations can be stylized. The conventional tools not using
these graphs would need to further analyze ASTs (or XML
documents) to obtain implicit information and thus their im-
plementations would be complex.

The remainder of the paper is organized as follows: Sec-
tion 2 describes an architecture of Jrbx. Section 3 explains
its implementation in detail. Section 4 discusses several ob-
servations. Section 5 describes studies related to the imple-
mentation of refactoring tools. Finally, Section 6 concludes
with a brief summary and future work.

2. Jrbx: Java Refactoring Browser with XML

Transformations in refactoring can be mainly shown in
the studies by Opdyke and Fowler. Opdyke proposed 26
low-level refactorings and three high-level ones [21]. Pre-
conditions that should be satisfied prior to each refactoring
and procedures to change code are defined. Fowler pro-
posed a catalog of 72 refactorings, consisting of names, mo-
tivations, mechanics, and examples [7].

We have developed Jrbx which supports the application
of 22 refactorings mainly shown in the Fowler’s catalog.
The task to check preconditions and change code is auto-
mated. The refactorings classified as five for a class, five
for a method, seven for a field, three for a local variable
or parameter, one for a statement, and one for a lump of

code. Jrbx leaves programmers the task to identify which
code should be refactored and determine which refactoring
should be applied.

An overall architecture of Jrbx is shown in Figure 1. Jrbx
consists of three components: the Sapid/XML tool plat-
form [15] (or Sapid/XML in short), CFG/PDG libraries,
and Refactor. Sapid/XML manages fine-grained informa-
tion about Java source code by using XML, called XSDML
(extensible software document markup language) [15]. The
CFG/PDG libraries construct a CFG and a PDG for each
method in source code. They are separated from Refac-
tor so as to make them easier to reuse since such libraries
are considered common to various software tools. Refac-
tor uses these two components and transforms target source
code into refactored one. In this section, we explain the
details of each of the three components.

2.1. Sapid/XML Tool Platform

Sapid/XML originated from Sapid (sophisticated APIs
for CASE tool development) [25] that is the tool platform
based on fine-grained software repository of C or Java pro-
grams. Sapid/XML provides APIs for converting source
code into an XSDML document and retrieving an XSDML
document corresponding to source code of interest.

The syntactic parser generates a fundamental XSDML
document representing Java source code as 20 non-terminal
and 7 terminal elements. It adds directly these elements
into original source code without eliminating its charac-
ters (see Figure 3). For example, the non-terminal element
<Class>, <Method>, <Field>, <Param>, <Local>,
<Stmt>, <Type> or <Expr> delimits a class declara-
tion, a method declaration, a field declaration, a formal pa-
rameter, a local variable declaration, a statement, a type,
or an expression, respectively. All tokens (identifiers, lit-
erals, keywords, comments, operators or separators, white
spaces, and new lines) remain in the textual contents of the
elements <ident>, <literal>, <kw>, <comment>,
<op>, <sp>, and <nl>, respectively. Attributes are used
for expressing additional properties (modifiers, accessibil-
ity settings, fully-qualified names, sorts of statements or ex-
pressions, and links of code fragments). The whole or por-
tion of the original code can be recovered by only removing
tags from its XSDML document.

The semantic analyzer inserts two kinds of link (refer-
ence) information: method invocation and field access. The
link is either a local or global link. The local link is repre-
sented by both the attributes id and defid. The defid
indicates the call or access to the element the id value of
which equals to the defid value. The global link across
several documents is enhanced by adding the attribute ref
which indicates a class defining the called method or the
accessed field. The process of determining which method

Code
transformer

programmer

Refactor Sapid/XML tool platform

Syntactic
parser

Java-XML
repository

PDG CFG

XML

XML

Java code

XML

refactoring name &
selection of code

G
ra

ph
ic

al
 e

di
to

r

target
source code

refactored
source code

XML

CFG/PDG libraries

GUI events

Sapid

Dependency
analyzer

Control-flow
analyzer

XMLJava
object

Collection of
Java wrappers

A
cc

es
s

lib
ra

ri
es

Semantic
analyzer

Java
code XML

unparser

Refactoring
handler

Figure 1. Architecture of Jrbx.

would be called and which field would be accessed is based
on the declarative (apparent) type of a related object.

All XSDML documents are stored in the repository and
retrieved through access libraries. They can be examined
and manipulated by using various XML technologies such
as the document object model (DOM) [28], the simple API
for XML (SAX) [16], or the extensible stylesheet language
(XSL) and XSL transformations (XSLT) [30]. In addition
to these low-level APIs, Sapid/XML provides 15 wrappers
that are collections of high-level Java APIs. For exam-
ple, the wrapper JavaClass, JavaMethod, or JavaCall cor-
responds to the XSDML element <Class>, <Method>,
or <Expr sort="MethodCall">, respectively.

2.2. CFG/PDG libraries

The information about CFGs and PDGs can be obtained
through our prepared Java classes or respective XML rep-
resentations. The CFG consists of a set of nodes cor-
responding to statements and directed edges between the
nodes. A statement is either an assignment or a condition
predicate, which is marked with a statement tag <Stmt>
or an expression tag <Expr> related to the method call.
Every edge represents immediately control flow between
two statements, which is either a true-control edge, a false-
control edge, or a fall-through edge [3]. An example of the
XML representation for a node and an edge of a CFG (of
source code in Figure 5) is as follows:
<node no="6" id="s826277891">

<use-var id="s805306372" name="i"/>..</node>
<edge src="6" dst="3"

sort="TrueCtrlFlow" loopback="yes"/>

The attribute id indicates the corresponding XSDML ele-
ment. The attribute src or dst denotes the value of the
attribute no of a source or destination node, respectively.
The attribute sort denotes the kind of flow edges. The
loopback="yes" means the back-edge for a loop.

The PDG consists of a set of nodes as well as those of
the CFG and directed dependence edges between the nodes.
The control dependence edge represents a control condition

on which the execution of a statement depends. The data de-
pendence edge represents the reachability of data between
statements (def-use chain for a variable or a parameter). The
def-use chain is classified as either a loop-carried or a loop-
independent [12]. An example of the XML representation
for an edge of a PDG is as follows:

<edge src="6" dst="6" sort="DefUseDep">
<var id="s805306372" name="i" lc="3"/></edge>

The attribute sort denotes the kind of dependence edges.
The attribute lc in the element var indicates a loop-node
carrying the edge enclosing var.

The current version of the CFG/PDG libraries cannot
deal with control flow involving exceptions. To alleviate
this limitation, a path edge [10] which indicates control flow
for exception handling will be embedded. Moreover, it an-
alyzes the inside of the specified method since the depen-
dency analysis of the whole program is too expensive. It as-
sumes that every parameter would affect the return value of
the invocation. The expensive cost of construction and syn-
chronization of the graphs might be solved by on-demand
data flow analysis based on the virtual control flow [20].

2.3. Refactor

Refactor is a core component of Jrbx, which restruc-
tures existing code without altering its behavior. It consists
of four sub-components: a code transformer, a refactoring
handler, an XML unparser, and a graphical editor.

The code transformer controls several modules to check
preconditions for each refactoring and to rewrite the con-
tents of an XSDML document converted from source code.
It receives a refactoring name and a selection of code given
by the programmer, and assigns suitable modules to do the
specified refactoring. The modules exploit not only XML
documents but also Java wrappers, CFGs, and PDGs. Some
of the modules might request the programmer to input ad-
ditional information through the refactoring handler. More
details on the implementation of the code transformer and
how it manipulates code will be explained in Section 3.

The refactoring handler determines a refactoring the pro-
grammer wants to apply based on GUI events arising from
his/her instructions on the editor (i.e., the selected code and
chosen menu item). Additionally, it records refactorings
done in the past and information about them so that the pro-
grammer can undo undesired changes.

The XML unparser recovers the refactored code by re-
moving every tag and leaving behind the textual contents of
elements. It also informs the graphical editor which texts in
the original and refactored code should be highlighted.

The graphical editor provides the capabilities to file and
edit source code as well as a standard editor. The program-
mer can select code, specify a refactoring, input additional
information, and preview refactored code through it.

3. Implementation

Jrbx is capable of refactoring programs written in
Java 1.4 or earlier. Its implementation contains about
94,000 NCNB (non-comment, non-blank lines of code) of
Sapid/XML written in Java, C, and C++, and 10,187 NCNB
of Refactor and 3,163 NCNB of the CFG/PDG libraries
written in only Java. This section describes the basic de-
sign of Jrbx and then explains the use of XML, CFGs, and
PDGs in the code transformer.

3.1. Basic Design

The basic design of the code transformer is shown in Fig-
ure 2. All implementations of the supported refactorings
are classified into six groups (class, method, field, variable,
statement, and miscellanea1) based on a code fragment se-
lected by a programmer. Settings and checks common to
each group are made by a superclass (e.g., MethodRefac-
toring) of the classes in the group. Moreover, the common
algorithm for applying respective refactorings is unified in
the template method execute in the abstract class Refactor-
ing by using the template method pattern [8]. The methods
for tasks of each refactoring, setUp, precondition, transform,
and additionalTransformation, are redefined in its subclasses.
The classification and the use of this template method help
the developers to find appropriate classes to be modified
or grasp the rough behavior without examining the detailed
implementation of each refactoring.

Moreover, a class changing code (e.g., MoveMethod-
Transformer) is separated from a class checking precondi-
tions (e.g., MoveMethod), as shown in Figure 2. There are
two reasons for this design. One is derived from the fact that
the task of a refactoring is mainly divided into two phases—
precondition checking and change creation—and most de-
fects in the implementation of its automation respectively

1EXTRACTMETHOD is categorized in the miscellaneous refactoring
since the selection contains multiple code fragments.

arise from an insufficient check or an incorrect change. This
separation facilitates independent tests and helps the de-
veloper to detect errors from the actual faults. The other
reason is that this separation allows the developer to reuse
classes for code changes and combine them when building
new refactorings. In fact, the class RenameField uses the
class RenameMethodTransformer to renaming accessors of
the renamed field, and EncapsulateField uses SelfEncapsu-
lateFieldTransformer to encapsulate a field existing in the
class on which it is defined.

If the developers want to modify an existing refactor-
ing, they would create a new subclass inheriting several
features from a class of the refactoring, and then replace
the old name registered in the refactoring menu with the
name of the new class. For example, to add a new pre-
condition to the MOVEMETHOD refactoring, they will cre-
ate SpecialMoveMethod derived from MoveMethod, rede-
fine the method preconditions, and register the name of the
created class. In case of adding a new refactoring, the de-
velopers have to create two new classes (e.g., InlineMethod
and InlineMethodTransformerderived from MethodRefactor-
ing and RefactoringTransformer, respectively), and then reg-
ister the name of the former class. An object corresponding
to the registered name is instantiated by using Java reflec-
tion when each refactoring is applied.

3.2. Using XML to Manipulate Code

The code transformer of Jrbx performs precondition
checking and change creation of source code by manipu-
lating the DOM tree of an XSDML document converted
from the code. For precondition checking, the developers
can use DOM APIs, the wrappers provided by Sapid/XML,
and six utility classes (e.g., QueryProject or QueryMethod)
provided by Jrbx. For example, the following Java code2

using DOM checks whether the specified method is native.

if (elem.getAttribute("native").equals("yes"))

The elem denotes a DOM element corresponding to the
XSDML element <Method>. The code using the wrapper
JavaMethod is as follows.

JavaMethod jmethod = new JavaMethod(elem);
if (jmethod.isNative())

To check complex preconditions, the utility methods are in
general used. For example, the following code tests if all
methods called by the moved method can be accessed from
the class to which the method is moved.

for (Iterator it = jmethod.getMethodCallNodes()
.iterator(); it.hasNext();) {

JavaCall ja = new JavaCall((Node)it.next());
JavaMethod jm = ja.getCalledJavaMethod();
if (!QueryMethod.isAccessible(dst, jm)) ..

2All constant values are actually defined in the class JXConstants.

Refactoring

+create(String)
+setSource(Document, CodeSelection)
+execute()
+getChangedXMLTexts()
#unparse()
-confirm()
-acceptCode()
-recoverCode()
#setUp()
#preconditions()
#transform()
#additionalTransformation()

Document:
 org.w3c.dom.Doucment
Node:
 org.w3c.dom.Node
Element:
 org.w3c.dom.Element

tr

RefactoringTransformer

#delete(Element)
#delete(JavaClass)
#delete(JavaMethod)
#delete(JavaField)
...
#insertBefore(String, Element)
#insertBefore(Element, Element)
#insertBefore(Element, JavaClass)
...
#insertAfter(String, Element)
#insertAfter(Element, Element)
#insertAfter(Element, JavaClass)
...
#rename(String, JavaClass)
...

MoveMethod
Transformer

changeSrc()
changeDst()
changeRef(JavaFile)

Class
Refactoring

Field
Refactoring

Miscellaneous
Refactoring

Statement
Refactoring

Variable
Refactoring

preconditions()
transform()
additionalTransformation()

MoveMethod

delete(jmethod);
..

previewDialog.show(changedFiles);
return previewDialog.accept();

try {
 setUp();
 preconditions();
 transform();
 additionalTransformation();
 if (confirm()) {
 acceptCode();
 } else {
 recoverCode();
 }
} catch (RefactoringException e) {
 messageDialog.show(e);
 recoverCode();
}

Method
Refactoring

setUp()
isEnabled()

tr = new MoveMethodTransformer(jmethod, dclass);
tr.changeSrc();
tr.changeDst();
unparse();

if (jmethod.isNative()) throw RefactoringException();

JavaClass jc = moveMemberDialog.show();
if (..) throw RefactoringException();

..

Node last = dclass.getLastMemberNode();
insertAfter(jmethod, last);
..

JavaClass,
JavaMtheod,
JavaField:
 Provided wrappers

Figure 2. Basic design of the code transformer of Jrbx (part of a class diagram).

The QueryMethod.isAccessible is a utility method
examining if the class dst is accessible to the method jm.
The implementation of this utility method is also simple
since references to the specified method can be easily found
by using the attributes ref and defid of XSDML.

The code change is performed by rewriting of the DOM
tree of an XSDML document. For this, the class Refac-
toringTransformer (see Figure 2) provides several primitive
manipulations. For example, the method delete is used for
deleting an element (portion of code) from the code, and
the method insertBefore or insertAfter is used for inserting
a new element before or after a specified element, respec-
tively. The method rename replaces an old name with a new
name by calling both the methods delete and insertAfter.
For an element corresponding to the specified code frag-
ment, the code transformer basically takes only four ac-
tions by calling the methods in RefactoringTransformer. It
(1) adds the attribute change, the value of which is either
"deleted", "inserted", or "reference", (2) in-
serts the element code containing a new text, (3) appends
a clone of the portion of the DOM tree to the original tree,
and (4) rewrites the textual content of an element.

Figure 3 shows XML manipulation in moving a method.
The attribute change="deleted" was added to the el-
ement <Method> of the moved method and its clone
with change="inserted"was appended to the element
<Class> corresponding to the target class as its child. The
part of clone was rewritten according to the target class.
Moreover, a new element <code> containing the code for
a delegating method was inserted after the moved element.

To recover the original code, the XML unparser col-
lects both elements delimited by the element with change

class Customer {
 double amountFor(Rental aRental) {
 .. }
}

class Rental {
}

class Customer {
 double amountFor(Rental aRental) {
 return aRental.amountFor();
 }
}
class Rental {
 double amountFor() {
 .. }
}before after

<Class fqn="Customer" id="63"><kw>class</kw>..
 <Method id="76" ..>
 <ident defid="76">amountFor</ident><op>(</op><Param..
 </Method>

</Class>
<Class fqn="Rental" id="s796917761"><kw>class</kw>..

</Class>

 change="deleted"

 <Method id="76" change="inserted">
 <ident defid="76">amountFor</ident><op>(</op><op>)..
 </Method>

 <code change="inserted">double amountFor(..</code>
copy

rewrite

Figure 3. Manipulation in moving a method.

="deleted" and those not delimited by the element
with change="inserted", and then removes every
tag and leaves behind the textual contents of the col-
lected elements. In case of the refactored code, it
collects both elements delimited by the element with
change="inserted" and those not delimited by the el-
ement with change="deleted". The attribute change
="reference" is used for highlighting notable code.

3.3. Using CFGs and PDGs

CFGs and PDGs are useful for automating various refac-
torings and making a refactoring tool more understandable.
This is because several complex refactorings require deep
and implicit information about control and data flow in
source code and these graphs are common representations
to capture this information. Nevertheless, most tools con-
fine such information in the task of individual refactorings
and are not designed to use them explicitly. Jrbx utilizes

CFG
2: int y = 0;
3: if (y == 0)
4: x = 10;
 else
5: x = 20;

2: int y = 0;
3: x = 10;
4: x = 20;

2: int y = 0;
3: x = 10;
4: x = 20;

exit

1

3

4

2

entry

ref

ref

extracted code
exit

1

3

4

2

entry

ref

ref

T
F

5

1: int x = 0; 1: int x = 0;

(a) (b)

2: int y = 0;

3: if (y == 0)
4: x = 10;
 else
5: x = 20;

undeclared variable

Ref () = {3, 4}
Ndecl () = {2, 3}

x
x Ref () = {4, 5}

Ndecl () = {2, 3}
x
x

int

int x;

Figure 4. Source codes and their CFGs.

CFGs and PDGs in automation of three refactorings, EX-
TRACTMETHOD, SPLITTEMPORARYVARIABLE, and RE-
PLACECONDITIONALWITHPOLYMORPHISM. Due to space
limitation, we partially explain the use of CFGs and PDGs
in EXTRACTMETHOD and SPLITVARIABLE.

3.3.1 EXTRACTMETHOD

The EXTRACTMETHOD refactoring turns part of the
original code into a new method. Here �� , �� , or ��

is a CFG of the original method, the new extracted method
including the selected code, or the method consists of re-
maining code, respectively. The node set of a graph � (a
CFG or PDG) for a method is denoted by ����. In this
refactoring, CFGs and PDGs are mainly used in respective
two ways.

CFG-1: Every execution flow must end in a return state-
ment if the extracted method returns the value to the calling
method. Jrbx traverses control flow on the CFG of the ex-
tracted method and collects all flows from a node except
return to a node not included in the method. If both flows
from a return node and a non-return node are detected, the
selection is considered to be invalid.

CFG-2: Jrbx determines a suitable position where a vari-
able in the extracted or remaining method should be de-
clared, by calculating the intersection of all reachable paths
from the entry node of � to nodes referring to the variable.

�������� �
�

��������
� � � ���� � �

�

��� � �,

where � is either �� or ��, and � is a variable which is
declared outside �. ������ is a set of nodes in � referring
to �, and � ��� � denotes a control flow from a node � to a
node � except a back edge for loop. The relation

�

��� means
the reflexive and transitive closure of the relation ��� . If
�������� contains one or more nodes, the layout-based low-
est node � � �������� is selected. The variable � is declared
at � if � permits declaring �, otherwise a new declaration of
� is inserted before �. An empty set of �������� means that
� has no need to be declared in the method for �.

 void m(int a[i]){
1: int s = 0;
2: int i = 0;
3: while (i < a.length){
4: if (a[i] > 0)
5: s += a[i];
6: i++;
 }
7: int t = s;
 } control dependence

data dependence

PDG

s

i

i

i
ii

i

a
i

s
i

s

a

1 3

4

5
6

f_in: a

2

7

entry

s

Figure 5. Source code and its PDG.

In Figure 4(a), the variable x would be undeclared in
the extracted code. Accordingly, the declaration (the under-
lined “int”) which is the type of x was added at the node
� because it is the layout-based lowest node of ������x�.
In Figure 4(b), the new declaration (the underlined “int
x”) was inserted before the node � because it (if-statement)
is the layout-based lowest node of ������x� but does not
permit declaring a variable. Theoretically, the behavior of
refactored code is preserved by inserting all declarations
into either the beginning of the extracted method or imme-
diately after the invocation to the extracted method in re-
maining method. However, it is undesirable that a variable
declaration is far from its reference.

PDG-1: All statements in a selection of code must be en-
closed by a single statement (or block) which exists imme-
diately outside the selection since extracting statements not
satisfying this condition give rise to non-executable code.
Jrbx uses control dependence of PDGs for this validation.
Consider the following set:

���	 � � � � ���� � ��� � �
� �� ���
� � � � ���
� � � �� do �,

where � �� � denotes a control dependence from a node
� to a node �. ���	 is a set of the outside nodes each of
which is not included in the selection but its destination of
the control dependence is included in the selection. The se-
lection is valid only if a unique outside node is found (i.e.,
the size of ���	 is one) under the condition that all to-
kens of nodes dominated by the nodes in the selection were
judged to be included in the selection. The reason to except
a control dependence with respect to a statement enclosed
in a do-block is that such statement is usually dominated by
both a do-statement and its parent statement. Jrbx removes
more internal one of the detected two control dependences.

For the code in Figure 5, the selection ��	 �	 �	 �	 �� or
��	 �� is valid because the ���	 is ��
��� or ���, respec-
tively. On the other hand, the selection ��	 �� is invalid
because nodes �, �, and � are dominated by the node � but
tokens of these nodes are not included in the selection. The
selection ��	 �� is also invalid because ���	 is ��	 ��.

PDG-2: Jrbx also uses PDGs for detecting a local variable
the value of which either passes into the extracted method

as a parameter or goes back to the calling method as a re-
turn. �
� is a set of variables each of which data dependence
existing from a node not included in the extracted method
to a node included in it.

��� � � � � � ��
� � ��
� � �

� �� ���
� � � � ���
� �,

where ���
� � denotes a data dependence from a node � to a

node � due to a variable �. � ��� � is a set of all local-scope
variables (local variables and parameters) appearing in �� .
A variable in �
� will become a parameter. In contrast, ���
is used for detecting candidates for a return variable.

��� � � � � � ��
� � � � ���
� �
� ��

� � � � �� ���
� � ��
���� � � � �� ���
� � �,

where � ��
���� � denotes a loop-carried data dependence

from a node � to a node � carried by a loop node �. If ���
is empty, no return variable is needed. If ��� has only one
variable, it will become a return variable. If ��� contains
two or more variables, the selection is invalid since the ex-
tracted method can not return the values of plural variables.

For example, consider the selection ��	 �	 �	 �	 �� in Fig-
ure 5. The variables a and s are determined to be param-
eters because the values of a and s come from the nodes
f in:a and �, respectively. Moreover, s is determined to
be a return variable because the value of s goes to the node
�. As another example, the selection ��	 �	 �� is invalid be-
cause both s and i are candidates for a return variable.

3.3.2 SPLITVARIABLE

The SPLITVARIABLE refactoring makes a separate tem-
porary variable for each responsibility. All references to be
separated along with the variable are determined by using a
PDG �� of the original method � .

Jrbx repeats the following two steps until the number of
separated nodes (���� described below) does not increase.

Step 1: It collects nodes that might affect the value of a
specified variable � at a node � by backward traversing
data-dependence edges on �� . ���� is a set of the
affecting nodes determined as follows.

���� ��� �� � � � � ���� � � �
�

�

� � �,

where �
�

�
�

� � denotes the reflexive and transitive clo-
sure of a data dependence ���

� �.

Step 2: It gathers nodes in which the nodes collected at the
step 1 might affect the references of � by traversing
forward data-dependence edges on �� . ���� is a set
of the affected nodes, which will be separated.

������� �� � � 	 � ����� � � � ���� ��� ��� �
�

�

� 	 �.

If all nodes defining the value of the variable � are in-
cluded in ����, it is not split because such splitting leads to
the same result as the RENAMEVARIABLE refactoring is ap-
plied. Jrbx changes every variable name appearing in ����

to a new name. Then it determines a suitable position where
the separated variable should be declared in the same way
of the procedure CFG-2 of EXTRACTMETHOD. Strictly,
this implementation slightly differs from the mechanics of
the SPLITTEMPORARYVARIABLE refactoring proposed by
Fowler [7]. Jrbx separates a temporary variable that might
be assigned several times while the original makes a sepa-
rate variable for each assignment.

4. Discussion

This section discusses several observations regarding the
benefits and performance of Jrbx.

4.1. Noteworthy Code in Implementation

Each refactoring often requires information specific to it-
self. For example, the EXTRACTMETHOD refactoring per-
mits selecting usual local declarations but forbids select-
ing local declarations in initializers (“ForInit” parts) of for-
statement. That is, these declarations must be distinguished.
For this, Jrbx introduced the attribute sort="For". It
analyzes XSDML elements of local declarations and their
parent elements by using DOM APIs, and then adds such
attribute to elements enclosed in “ForInit”. This procedure
was written in the method setUp of the class ExtractMethod.
The up-front analysis and manipulation separates the task
for collecting information about source code from that for
manipulating the code. Accordingly, Jrbx simplifies the im-
plementation of precondition checking or change creation.

As another example, XSDML (or XML) documents free
the developers to query and manipulate source code. Con-
sider the following Java code that collects types used in a
code fragment of interest (e.g., a class, method, field, state-
ment, or expression).

NodeList nl = elem.getElementsByTagName("Type");
for (int i = 0; i < nl.getLength(); i++) {
Element e = (Element)nl.item(i);
JavaType jt = new JavaType(e); ..

Any XSDML element can be specified as elem in the code.
That is, this code is available for every XML element and
thus it is not needed to prepare respective APIs. In case that
the developers want to create a new refactoring that collects
used types in the range other than that of the existing refac-
toring, they can reuse this code without changing it. More-
over, this property has an advantage in order to understand
existing refactorings without reading various kinds of code.

Next consider the following code that validates a selec-
tion by using PDGs in EXTRACTMETHOD.

GraphCompSet dom = new GraphCompSet();
Iterator it = pdg.getEdges().iterator();
while (it.hasNext()) {
Dependence edge = (Dependence)it.next();
if (edge.isCD()) {

PDGNode src = (PDGNode)edge.getSrcNode();
PDGNode dst = (PDGNode)edge.getDstNode();
if (!src.getCFGNode().isDoSt() &&

!PDGNodes.contains(src) &&
PDGNodes.contains(dst)) {

dom.add(src); ..

The pdg is an object of the class PDG provided by Jrbx,
which denotes the PDG of the original method. As space is
limited, we will not explain details of the code. Neverthe-
less it is reasonable to suppose that this code is very similar
to the logical formula described in PDG-1 of Section 3.3.
The implementation conforming to a formal procedure of a
refactoring facilitates the developers understanding, modi-
fying, and testing it.

4.2. The Size of Code in Implementation

To demonstrate the advantages of Jrbx, several experi-
ments with Jrbx and other refactoring tools will be made,
and their extensibility and modifiability must be carefully
measured, but it is hard to do this. Hence, we estimated
how much is the burden of reading code to understand and
change existing refactorings by counting lines of code in-
cluded in the implementation of Jrbx.

Table 1 shows how many NCNB (non-comment, non-
blank) lines of code have been written for each refactoring
group of Refactor. The “Common” indicates the number of
lines of code common to each group (e.g., MethodRefac-
toring in Figure 2) and the “Utility” denotes the number
of lines of code common to every group (e.g., Refactoring-
Transformer in Figure 2 or the utility class QueryMethod).
The values in Table 1 do not include the number related to
code for dialog windows.

In addition, we observed six (or four) refactorings shown
in Table 2. The “Jrbx” and “Eclipse” show how many
NCNB lines of code are included in Jrbx and Eclipse 3.0
implementations. These values do not include the number
related to common and utility modules. Note that the less
value of MOVEMETHOD in “Eclipse” indicates the num-
ber of lines of code moving only instance methods, and
the value in parentheses contains the number of lines of
code moving static members (not only static methods but
also classes and fields). The value of MOVEMETHOD in
“Jrbx” denotes the number of lines of code moving both in-
stance and static methods (Jrbx can also move static classes
and fields but its implementation is divided into different
classes). The maximum and minimum values of EXTRACT-
METHOD in “Eclipse” indicate the numbers of lines of code
including and not including modules for flow analysis.

The “Passed” in Table 2 means the ratio of the number
of passed test cases to all test cases provided by Eclipse3.
This shows the similarity of respective refactorings. For
example, Jrbx passed all 200 test cases of the Eclipse’s

3Test cases not passed in Eclipse itself were eliminated.

Table 1. Number of NCNB lines in Jrbx.
Refactoring # refac. Precond. Transform. Common Total

Class 5 321 197 34 552
Method 5 859 361 36 1256
Field 7 638 282 47 967
Variable 3 218 142 46 406
Statement 1 188 165 65 418
Miscellanea 1 642 311 47 1000
Total 22 2866 1458 275 4599
Average - 130 66 13 209
Utility - - - - 2903

Table 2. Number of NCNB lines and passed
test cases in each refactoring.

Refactoring Jrbx Eclipse Passed

RENAMEMETHOD 275 461 200 / 200
RENAMEFIELD 207 451 50 / 54
MOVEMETHOD 630 1617 (2615) 65 / 73
EXTRACTMETHOD 953 1239 � 2963 204 / 229
SPLITVARIABLE 215 N/A —
REPLACECONDITIONAL 353 N/A —

RENAMEMETHOD refactoring and thus it can be consid-
ered to provide as the same functionality as Eclipse’s RE-
NAMEMETHOD. The failure does not indicate an error in
testing but arises from the difference of functionality. For
example, in RENAMEFIELD, one failure was caused by the
difference between respective rules of renaming accessors.
Moreover, Jrbx does not rewrite Javadoc comments accord-
ing to code change by refactorings. On the other hand,
Eclipse does not permit a renamed field to have the same
name as any local variable although those names would
cause no conflict. In MOVEMETHOD, Eclipse moves an ad-
jacent comment (not Javadoc) along with the moved meth-
ods. Moreover, Eclipse can move two methods together
but Jrbx prohibits this movement. Referring to Table 2,
the functionality of the top three refactorings of Jrbx and
Eclipse are considered to be almost the same or similar. The
ratio (204/229) with respect to EXTRACTMETHOD does not
indicate accurate similarity because Jrbx can not extract a
method from try-catch blocks or expressions and the ratio
was calculated without including test cases related to such
method extraction.

The results in Tables 1 and 2 would help estimating the
cost of inspecting the existing refactorings or creating a new
refactoring although it might not directly show the effect on
the extensibility and modifiability of Jrbx. Moreover, the
bottom three refactorings could be all completed with few
lines of code (953, 215, and 353, respectively) consider-
ing the complex refactorings. These results are reasonable
since the XML documents we used explicitly contain fully
analyzed information, and information about flow and de-
pendence is provided by the CFG/PDG libraries. As an-
other reason, many procedures related to the XML manipu-
lation are shared by the implementations of refactorings as

described in Section 4.1. This also agrees with the fact that
the number of “Utility” in Table 1 is relatively large.

4.3. Performance

The use of XML makes it easier to extend the exist-
ing representation of source code and implement various
refactorings, but it sacrifices performance. It is worth notic-
ing the results of the simple experiment with Sapid/XML.
According to our experiment4 reported in [15] (using four
programs: Notepad, Stylepad, SwingSet2, and Java2D
packaged in the Sun Microsystems J2SDK1.4.2), the size
of a converted XSDML document is about 10 times larger
than the original source file. Moreover, the processing time
(the sum of conversion and simple manipulation time) for
each source file is about 7 to 15 seconds. Currently, the
semantic analyzer of Sapid/XML is being revised. As a re-
sult of an experiment with its latest version, the processing
time is improved as about 2.4 to 5.5 seconds (Notepad: 5.5,
Stylepad: 3.3, SwingSet2: 2.7, and Java2D: 2.4 seconds,
respectively5).

These values show that Jrbx consumes much more space
and time. Especially, the result of the processing time sug-
gests that Jrbx must pay unreasonable penalties when doing
refactorings. If it assumes that one source file involves re-
lationships to ten other source files, the programmer must
wait about 26.4 (2.4�11) to 60.5 (5.5�11) seconds until
he/she gets factored code. The reason for taking a long
time is that Jrbx requires reconverting (and synchronizing)
the whole of a source file to be refactored and its related
files, and the implementation of the semantic analyzer is
immature. To reduce such time, it is needed to cache pre-
viously analyzed information and partially convert source
files based on the cached information.

5. Related Work

The first refactoring tool is RefactoringBrowser [23] for
Smalltalk and its architecture has been followed by many
tools. Regarding Java, several refactoring tools including
Eclipse [5], IntelliJ IDEA [13], and JRefactory [26] are
available6. The architecture of Jrbx is strongly influenced
by these tools. The conventional refactoring tools usu-
ally use ASTs as an internal representation of source code
and provide well-named, sophisticated APIs to examine and
manipulate the source code. In addition, several tool plat-
forms such as the DMS Software Reengineering Toolkit [4]

4The experiment was performed on a computer with a Pentium4
2.4GHz CPU and a 640MB of RAM, running RedHat Linux9 and Sun
Microsystems J2RE1.4.2 01.

5These values ware measured on a computer with a Pentium4 3.0GHz
CPU and a 1GB of RAM, running RedHat Linux9 and Sun Microsystems
J2RE1.4.2 06.

6Many up-to-date tools can be seen in http://www.refactoring.com.

and RECODER [22] are capable of examining and manip-
ulating source code by using ASTs. Jrbx differs much from
these tools and platforms in respect to the use of an XML
representation of source code. Of course, ASTs contain suf-
ficient information to implement various refactorings and
AST manipulation is quick. However, the AST manipula-
tion might require modification of AST elements or addi-
tion of new APIs although the functionality of an existing
refactoring is slightly changed. On the other hand, the XML
manipulation of Jrbx accommodates slight changes by ex-
tending an XML schema and using standard APIs.

Jrbx is analogous to RefaX [17] since they are both flex-
ible refactoring frameworks based on XML representations
of source code and their motivations are very similar. One
of the main differences between Jrbx and RefaX is the ex-
pectation of their used XML representations. Although Re-
faX aims to be independent of source models, target pro-
gramming languages, and code manipulation technologies,
these benefits are hard to obtain from only the adoption of
XML. This is because implementations of complex refac-
torings much depend on source models and programming
languages. Jrbx supports standard and stylized manipula-
tions of source code by exploiting not only XML but also
CFGs and PDGs, and provides modifiable implementations
of complex refactorings (e.g., EXTRACTMETHOD).

Several XML representations of source code, such as
JavaML [2], GXL [11], and srcML [14], have been pro-
posed. The use of these representations in refactoring might
be expected. This paper shows a running implementation of
the refactoring tool using an XML representation and dis-
cusses its features.

The concept of introducing CFGs and PDGs into refac-
torings is not novel. Griswold and Notkin presented a pro-
gram transformation tool exploiting these graphs and its
usefulness [9]. Nevertheless, no concrete implementation
in refactoring has been provided. The three refactorings of
Jrbx, which are briefly mentioned in Section 3.3, demon-
strate that the use of CFGs and PDGs increases the possi-
bility of automating several refactorings and simplifies the
implementation of automated refactorings.

Regarding the use of graphs, Mens, Demeyer, and
Janssens suggested a graph representation of source code
and formal transformations of refactorings by using graph
production rules [18]. Besides the graph representation,
Tip, Kiezun, and Bäumer implemented some refactorings
related to generalization by using type constraints for source
code [27]. The main concern of these approaches is to for-
malize transformations that preserve the behavior of source
code and to increase the reliability of refactoring tools. On
the other hand, the purpose of our study is to make refactor-
ing tools more maintainable. Extensible and modifiable im-
plementation is still significant under the situation that not
all refactorings can be perfectly formalized or generated.

6. Conclusion

Refactoring helps maintainers to understand existing
source code by making it more readable and actually show-
ing the changed code to them. We have presented Jrbx, a
tool that automates several transformations in refactoring,
and described how it has been designed and implemented.
Jrbx uses a fine-grained XML representation and two graph
representations (CFGs and PDGs) to examine and manipu-
late source code. Accordingly, Jrbx makes it easier to create
new refactorings or modify existing ones.

The development of Jrbx is continuing. There are three
issues in its enhancement. The first issue is to improve its
scalability and performance as mentioned in Section 4.3.
The second one is to increase the applicability to target
source code. Refactorings would be usually applied to only
complete programs. However, refactoring complete parts
of incomplete programs is often required in actual develop-
ment or maintenance. To agree this request, the extension
of the XML presentation is needed. The last and immediate
issue is to cooperate with existing IDEs. Jrbx is currently
a stand-alone application having a poor GUI editor and has
no pretty printer to format refactored code. We are planning
to integrate Jrbx into popular IDEs (e.g., Eclipse).

Jrbx and the Sapid/XML platform can be downloaded
from http://www.jtool.org/.

Acknowledgments

The authors would like to thank André van der Hoek
and Christopher Van der Westhuizen for their valuable sug-
gestions on the early version of this paper and the anony-
mous reviewers for their helpful comments. We also thank
Akinori Yonezawa, Etsuya Shibayama, and all members
of the Sapid project including Kiyoshi Agusa. This work
was sponsored by the Information-technology Promotion
Agency (IPA), Japan.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, 1986.

[2] G. J. Badros. JavaML: A markup language for Java
source code. In Proc. Int’l WWW Conference, 2000.
http://www9.org/w9cdrom/index.html.

[3] T. Ball and S. B. Horwitz. Slicing programs with arbitrary
control flow. In Proc. Intl. Work. on Automated and Algo-
rithmic Debugging, LNCS 749, pages 206–222, 1993.

[4] I. D. Baxtor, C. Pidgeon, and M. Mehlich. DMS: Program
transformations for practical scalable software evolution. In
Proc. ICSE’04, pages 625–634, 2004.

[5] Eclipse.org. Eclipse. http://www.eclipse.org/.
[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The pro-

gram dependence graph and its use in optimization. ACM
TOPLAS, 9(3):319–349, 1987.

[7] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[9] W. G. Griswold and D. Notkin. Automated assistance for
program restructuring. ACM TOSEM, 2(3):228–269, 1993.

[10] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
test selection for Java software. In Proc. OOPSLA, pages
312–326, 2001.

[11] R. C. Holt, A. Winter, and A. Schürr. GXL: Toward a stan-
dard exchange format. In Proc. WCRE’00, pages 162–171,
2000.

[12] S. Horwitz, T. Ball, and D. Binkley. Interprocedural slic-
ing using dependence graphs. ACM TOPLAS, 12(1):26–60,
1990.

[13] JetBrains. IntelliJ IDEA. http://www.jetbrains.com/idea/.
[14] J. I. Maletic, M. L. Collard, and A. Marcus. Source code files

as structured documents. In Proc. IWPC’02, pages 289–292,
2002.

[15] K. Maruyama and S. Yamamoto. A CASE tool platform
using an XML representation of Java source code. In Proc.
SCAM’04, pages 158–167, 2004.

[16] D. Megginson. Simple API for XML (SAX).
http://www.saxproject.org/.

[17] N. C. Mendonça, P. H. M. Maia, L. A. Fonseca, and R. M. C.
Andrade. Refax: A refactoring framework based on XML.
In Proc. ICSM’04, pages 147–156, 2004.

[18] T. Mens, S. Demeyer, and D. Janssens. Formalising behavior
preserving program transformation. In Proc. Graph Trans-
formation, LNCS2505, pages 286–301, 2002.

[19] T. Mens and T. Tourwé. A survey of software refactoring.
IEEE TSE, 30(2):126–139, 2004.

[20] J. D. Morgenthaler. Static analysis for a software transfor-
mation tool. Technical report, Ph.D. thesis, University of
California, San Diego, 1997.

[21] W. F. Opdyke. Refactoring object-oriented frameworks.
Technical report, Ph.D. thesis, University of Illinois,
Urbana-Champaign, 1992.

[22] RECODER. http://recoder.sourceforge.net/.
[23] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for

smalltalk. Theory and Practice of Object Systems (TAPOS),
3(4):253–263, 1997.

[24] D. B. Roberts. Practical analysis for refactoring. Tech-
nical report, Ph.D. thesis, University of Illinois, Urbana-
Champaign, 1999.

[25] Sapid: Sophisticated APIs for CASE tool Development.
http://www.sapid.org/.

[26] C. Seguin and M. Atkinson. JRefactory.
http://jrefactory.sourceforge.net/.

[27] F. Tip, A. Kiezun, and D. Bäumer. Refactoring for gener-
alization using type constraints. In Proc. OOPSLA, pages
13–26, 2003.

[28] World Wide Web Consortium. Document object model
(DOM). http://www.w3.org/DOM/.

[29] World Wide Web Consortium. Extensible Markup Language
(XML). http://www.w3.org/XML.

[30] World Wide Web Consortium. The extensible stylesheet lan-
guage family (XSL). http://www.w3.org/Style/XSL/.

