
A CASE Tool Platform
Using an XML Representation of Java Source Code

Katsuhisa Maruyama�

Department of Computer Science
Ritsumeikan University

1-1-1 Noji-higashi Kusatsu
Shiga 525-8577, Japan
maru@cs.ritsumei.ac.jp

Shinichiro Yamamoto
Department of Information Systems

Aichi Prefectural University
1522-3 Ibaragabasama Kumabari Nagakute-cho

Aichi-gun Aichi 480-1198, Japan
yamamoto@ist.aichi-pu.ac.jp

Abstract

Recent IDEs have become more extensible tool platforms
but do not concern themselves with how other tools running
on them collaborate with each other. They compel devel-
opers to use proprietary representations or the classical
abstract syntax tree (AST) to build source code tools. Al-
though these representations contain sufficient information,
they are neither portable nor extensible. This paper pro-
poses a tool platform that manages commonly used, fined-
grained, information about Java source code by using an
XML representation. Our representation is suitable for de-
veloping tools which browse and manipulate actual source
code since the original code is annotated with tags based on
its structure and retained within the tags. Additionally, it ex-
poses information resulting from global semantic analysis,
which is never provided by the typical AST. Our proposed
platform allows the developers to extend the representation
for the purpose of sharing or exchanging various kinds of
information about the source code, and also enables them
to build new tools by using existing XML utilities.

1. Introduction

Object-oriented software is hard to develop without inte-
grated development environments (IDEs) since it consists of
many classes and contains the relationship between them. A
significant point is that a recently released IDE is not only a
collection of programming tools but also an extensible tool
platform. For example, Eclipse [3] has a powerful plug-in
mechanism for easily adding new tools to itself and remov-
ing existing tools from itself.

By supporting the plug-in mechanism, developers have a
chance to build their own tools and would want their tools

�Visitor at the Institute for Software Research (ISR), University of Cal-
ifornia, Irvine, from September 2003 through September 2004.

to collaborate with each other. Accordingly, a tool platform
must collect the detailed information about tools (or pro-
grams) being developed and then present it in proper form
that can meet developers’ diverse requirements. Unfortu-
nately, conventional tool platforms store information about
source code by using either proprietary representations or
the typical abstract syntax tree (AST) [14]. Of course
these representations contain sufficient information and sev-
eral powerful tool platforms such as Eclipse [3], the DMS
Software Reengineering Toolkit [10], or RECORDER [9]
provide well-designed application programming interfaces
(APIs) for accessing the information.

However, the classical representations are neither
portable nor extensible. That is, none of the conventional
platforms concern themselves with how a newly built tool
stores the additional information obtained through its exe-
cution and exchanges such information with other tools. In
addition, the proprietary or fundamental APIs are insuffi-
cient for building diverse tools. Therefore, the tool devel-
opers tend to create overhead modules, which are used for
extracting necessary information from the integrated repre-
sentation, in their respective tools, or might have to modify
the integrated modules and date structure. To build vari-
ous kinds of software tools managing source code and make
them collaboratively work together without too much effort,
the tool platform should not only use a simple standard but
also portable and extensible representation. Such a repre-
sentation would act as a medium for exchanging source-
code information and would allow the developers to add in-
dividual information they define.

The authors have developed a tool platform with a soft-
ware repository that can store and provide fine-grained in-
formation about Java source code by using the extensible
markup language (XML) [4]. This paper proposes this tool
platform and a new XML-based representation, which are
called Sapid/XML (sophisticated APIs for CASE tool de-

velopment with an XML repository) and XSDML (exten-
sible software document markup language), respectively.
XSDML documents are converted from source code; code
fragments are classified by marking them with respective
tags and are structured by nesting the tags based on the
structure of the source code. Additionally, these documents
contain additional information resulting from syntactic and
semantic analysis.

Sapid/XML provides a fine-grained XML representation
which is an alternative to the classical AST of Java source
code. It makes the source code more portable and con-
venient since XSDML exposes the structure and relation-
ship found in the source code and the format is based on
XML. XML is a simple, widely used text-based format that
is used to design markup languages suitable for the capture
and exchange of information. Many existing XML utili-
ties can be used for examining and manipulating the source
code. Sapid/XML also allows developers to extend the pre-
pared representation although its extension would need a
simple consistency check for the document type definition
(DTD) [4]. They can define new tags and attributes to share
common information and exchange specific information. It
is useful for building new software tools to extend the pre-
pared representation of source code without examining and
modifying modules in the tool platform. Here the authors
have to mention that Sapid/XML does not strive to dismiss
existing IDEs. It shows the potential of a tool platform us-
ing an XML representation of the source code.

We first describe existing XML representations of
object-oriented source code. Next we present an overview
of Sapid/XML and explain how Java source code is con-
verted to an XSDML document and how software tools ac-
cess the converted XSDML document. Then we show sev-
eral software tools running on Sapid/XML and give experi-
mental results in respect to the performance of Sapid/XML.
Finally, we conclude with a summary.

2. XML Representations of Source Code

Several XML formats currently exists for representing
object-oriented source code. For example, GraX [19] and
GXL [23] are classified into a graph-based format. They
store information about nodes and edges of the abstract
syntax graph (ASG) [6] without reflecting the nested struc-
ture of the source code in its XML representation. On the
other hand, Harmonia [17], JavaML [15], OOML (cppML
and JavaML) [27], bison-based parser [29], XMLizer [28],
FreeTXL [18], and srcML [26, 25] directly encode actual
source code or its AST to the nested structure of their XML
representations. These representations are all intended to
exchange information about source code or display the ab-
stract structure of the source code. They are fulfilling such
purpose since XML is a simple, extensible, widely used

text-based format. This concept is analogous to that of our
XSDML. However, the main purpose of Sapid/XML is to
facilitate developers in building tools which manipulate ac-
tual source code.

From this point of view, XSDML (and Sapid/XML) is
closely related to srcML although their target programming
languages are different (Java and C++, respectively). All of
the conventional representations except srcML never sup-
port the representation of comments or formatting [26].
That is, only srcML and XSDML preserve the original text
of source code containing formatting information and guar-
antee the restoration of the complete original source code.
Moreover, both of them have several common features: tag
names based on programmers’ knowledge (i.e., syntactic
names such as classes, methods, or fields) and the conver-
sion that directly inserts tags to source code as meta-data.

While XSDML is similar to srcML, there are three main
differences between them. First, XSDML provides all frag-
ments of source text (operators or separators, identifiers,
keywords, white spaces, and new lines) with dedicated tags
(see Section 3.1). These tags allow developers or tools to
add extra white spaces and new lines that were not con-
tained in the original source code. The original white spaces
and new lines are always enclosed with terminal elements
while extra ones are enclosed with non-terminal elements.
Secondly, XSDML aggressively exploits many kinds of at-
tributes while very few attributes are used in srcML (see
Section 3.1). The verbose attributes alleviate additional
lexical analysis of the contents of elements or the time-
consuming traversal of several elements when the develop-
ers and tools obtain the properties of code fragments (e.g.,
modifiers). Finally, XSDML contains several useful links
obtained through global (and local) semantic analysis for
the whole of source code (Section 3.2). Some of the links
are used in GXL or JavaML but are not provided by srcML.

3. Sapid/XML Tool Platform

Sapid/XML generates the XML documents represented
in our proposed XSDML from Java programs (written in
Java 1.4 or earlier) and provides them for software tools.
Figure 1 shows an overview of the Sapid/XML tool plat-
form. It mainly consists of four components: a source code
converter (a syntactic parser and a semantic analyzer), ac-
cess libraries, a Java-XML software repository, and Java
wrappers. This section explains how Java programs are
converted into XSDML documents and what information
is contained in these documents, and describes the access
libraries and the Java wrappers accessing the documents.

3.1. Syntactic Parser

XSDML represents the classical text-based source code
as 20 non-terminal elements and 7 terminal ones, which are

XML documents

Sapid/XML tool platform

Text-based
source code

Source code
converter

XML

XML

XML

XML

DOM, SAX, XSLT, JDOM, ...

Semantic analyzer
(global analysis)

Semantic analyzer
(local analysis)

Access libraries (a collection of APIs for conversion and retrieval)

 Java
programs
 Java
programs
 Java
programs

Java
objects

Syntactic
parser Java-XML

repository
DTD

Tools for supporting
software development

...Refactoring
 browser

Java
wrappers

Source code
 browser

CFG/PDG
 constructor

Figure 1. Overview of the proposed tool platform.

shown in Table 1. The terminal element has only the tex-
tual contents while the non-terminal element can nest oth-
ers. The syntactic parser directly inserts these elements into
the original source code without changing the contents of
the code, that is, it only adds tags and attributes in the orig-
inal code. Each of the code fragments is delimited by the
tags and all the tokens (identifiers, keywords, comments,
white spaces, and new lines) of the code remain in the tex-
tual contents of the terminal elements. The original source
code can be restored from the converted XSDML document
by removing all the tags and leaving behind the textual con-
tents of the terminal elements. The attributes are available
to represent additional properties such as modifiers, accessi-
bility settings, fully-qualified names, and sorts of elements.
For example, the type (Type), statement (Stmt), expres-
sion (Expr), and literal (literal) elements are classified
as 3, 15, 59, and 6 by the attribute sort, respectively 1.

The simple source code quoted from [15] and the XS-
DML document converted from it are shown in Figures 2
and 3, respectively. Each line of the document except the
XML headers corresponds to that of the source code since
the XSDML retains every new line character. Moreover, the
original code can be seen in the textual contents of the ter-
minal elements (e.g., the blanks or keywords are enclosed
with the <sp> or <kw>). This crude document is hard for a
human to read but we can use various XML utilities to view
it. Figure 4 illustrates the tree view of the XSDML docu-
ment shown in Figure 3 as displayed by the Mozilla [8].

Here it is worth discussing the problems Badros pointed
out in [15]. He stated that the representation marked-up by
only adding tags would need further lexical analysis of the

1See http://www.jtool.org for details.

Table 1. Elements of XSDML
Element name Fragment of Java source code
File Compilation unit (File)
Package Package declaration
Import Import declaration
Class Class declaration
Intf Interface declaration
SInit Static initializer
Ctor Constructor declaration
Method Method declaration
Field Field declaration
Param Formal parameter
Local Local variable declaration
ExtdOpt Superclass clause
ImplOpt Superinterface clause
ThrwOpt Throws clause
Members Class/interface body
Qname Qualified identifier
Type Type
Stmt Statement
Label Label declaration
Expr Expression
ident Identifier
literal Literal
comment Comment
kw Keyword
op Operator
sp Blank or tab character
nl New line character

1: import java.applet.*;
2: import java.awt.*;
3:
4: public class FirstApplet extends Applet {
5: public void paint(Graphics g) {
6: g.drawString("FirstApplet", 25, 50);
7: }
8: }

Figure 2. Original Java source code.

<?xml version="1.0"?>
<!DOCTYPE File SYSTEM "JX-model3-ext.dtd">
<File classpath="/usr/home/maru/Work/Report/scam04/xsdml-examples/FirstApplet" id="s792723457" pat..
</nl><Import id="d0"><kw>import</kw><sp> </sp><QName id="s843055105"><ident defid="s843055105">jav..
</nl><nl line="3" offset="41">
</nl><Class access="Public" fqn="FirstApplet" id="s796917761"><kw>public</kw><sp> </sp><kw>class</..
</nl><sp> </sp><Method access="Public" id="s809500673" typefirst="s813694978"><kw>public</kw><sp>..
</nl><sp> </sp><Stmt id="s826277890" sort="EXPR"><Expr id="s830472193" sort="DOT"><Expr id="s83..
</nl><sp> </sp><op>}</op></Stmt></Method><nl line="7" offset="162">
</nl><op>}</op></Members><Ances distance="0" name="FirstApplet" sort="CLASS"></Ances><Ances distan..
</nl><FqnMap fqn="java.awt.MenuContainer" jar="rt.jar" path="java/awt/MenuContainer.class"></FqnMa..

Figure 3. Document represented in XSDML.

textual contents, and it would not sufficiently abstract the
original source code. To alleviate these problems, XSDML
introduces a fine-grained tagging and slightly verbose at-
tributes. For example, the method call at line 6 in the source
code shown in Figure 2 is converted into1:

<Stmt id="s826277890" sort="EXPR">
<Expr id="s830472193" sort="DOT">

<Expr id="s830472194" sort="VarRef"
read="yes" write="yes">

<ident defid="s805306369">g</ident>
</Expr><op>.</op>
<Expr id="s830472195" sort="MethodCall">
<ident defid="c302" fqn="void"

ref="java.awt.Graphics">
drawString</ident>

<op>(</op>..
</Stmt>

The statement (Stmt) corresponding to the method call is
decomposed into some detailed elements. Another exam-
ple for the method declaration from line 5 through 7 is as
follows:

<Method access="Public" id="s809500673"
typefirst="s813694978">

<kw>public</kw><sp> </sp>..
</Method>

The value of the access attribute and the textual contents
in <kw> are redundant. As shown in the above two ex-
amples, the XSDML representation no longer requires lex-
ical analysis although it retains the contents of the origi-
nal code. Moreover, these examples indicate that our con-
version is suitable for implementing tools which manipu-
late actual source code and browse it without changing its
appearance since white spaces (tabs and blanks) and new
lines remain. For example, a refactoring browser or a code
checker works well with our representation since most tool
users do not want it to remove comments or formatting char-
acters (white spaces and new lines) from the original source
code. The highly abstract representation such as JavaML is
insufficient to implement these software tools although its
representation would be convenient for making a survey of

1Blanks and new lines are inserted in the examples presented hereafter
so that the readers can easily read them.

Figure 4. Tree view of the XSDML document.

the source code or measuring its metrics and some tools re-
quiring such a representation independent to a specific pro-
gramming language.

3.2. Semantic Analyzer

The significant feature of Sapid/XML is that it reflects
information based on semantic analysis in its XML repre-
sentation. The semantic analyzer inserts two kinds of in-
formation: type and reference. The type information is ex-
pressed by the fqn attribute. For the type Graphics at line

5 in the source code shown in Figure 2, the following de-
scription is generated.

<Type fqn="java.awt.Graphics" id="s813694979"
sort="Object">

<ident defid="c4" ref="java.awt.Graphics">
Graphics</ident>

</Type>

It can be easily seen that the fully-qualified name of
Graphics is java.awt.Graphics because of the value of
fqn. The fully-qualified name is determined based on the
search path for class and jar files, and used for obtaining the
next reference information.

The reference information is classified as a local or
global link. The local link is expressed by both the id and
defid attributes like the JavaML. The defid indicates
the link of the call or access to the element the id value of
which equals to the defid value. A referenced element is
always decided since the id value must be unique within an
XSDML document. XSDML enhances this notation to ex-
press global links across several XML documents by adding
the ref attribute. For example, the following description:

<Expr id="s830472195" sort="MethodCall">
<ident defid="c302" ref="java.awt.Graphics"

fqn="void">drawString</ident>
<op>(</op>..

</Expr>

indicates invocation to the method drawString the id value
of which equals to c302 in the class java.awt.Graphics.
The fqn attribute denotes the return type. The link of the
field access is represented in the same manner.

Along with the reference information, the read and/or
write attributes are added to all Expr elements corre-
sponding to the references to fields and local variables. For
example, the variable g which is a primary expression of the
method call to drawString is represented as follows:

<Expr id="s830472194" sort="VarRef"
read="yes" write="yes">

<ident defid="s805306369">g</ident>
</Expr>

The read="yes" or write="yes"means that the vari-
able is used without or with changing its value, respectively.
The write="yes" is added when the state of the object
indicated by the reference variable might change (i.e., the
value of any fields defined in the object might be written).

The process of determining which method would be
called and which field would be accessed is similar to
that done when compiling source code (Section 15.11 and
15.12 in [21]). It is based on the apparent (or declarative)
type of a related object since an actual object is decided
at run-time and its precise type is not known at compile-
time. The apparent type is obtained from the value of
the fqn attribute corresponding to the primary ident or
Expr element. Here the careful readers will wonder why

java.awt.Graphics has the id attribute. Sapid/XML uses
the byte code engineering library (BCEL) [1] and automat-
ically generates summary XML documents from class (and
jar) files whenever the files are referred by the analyzed
class. Moreover, it determines which classes should be re-
analyzed when a class is changed, by utilizing the global
link information (and specially adding the new tags Ances
and FqnMap). If any ancestor of the specified class, any
class it refers to, or itself is modified, the platform automat-
ically re-generates a new XSDML document from it.

The type and reference (plus read/write) information is
often extracted by existing tools but is not reusable in gen-
eral. For example, most compilers lose part of the infor-
mation after generating final class files. Although some of
them store the information in the class files, its format is
hard to read because of optimization. Sapid/XML makes
such information more explicit and provides it in an easy-
to-use format in order that software tools easily query and
manipulate source code. This is significant since such se-
mantic analyzer is expensive to build from scratch. More-
over, the provided link information must be common and
fundamental to all kinds of software tools although it is not
enough to build them without supplemental information.

3.3. Access Libraries and Wrappers

Every XSDML document is stored in the Java-XML
repository. Tools running on Sapid/XML can request ac-
cess to the libraries to convert Java programs into XSDML
documents or to retrieve some of them from the repository
with several queries. The retrieved documents can be used
through various XML utilities, (e.g., the document object
model (DOM) [2], the simple API for XML (SAX) [11],
the extensible stylesheet language (XSL) and XSL trans-
formations (XSLT) [5], and JDOM [7]). For example, the
following Java code using DOM APIs outputs the name of
all methods existing in a Java source file of interest.

Element elem = doc.getDocumentElement();
NodeList nl =
elem.getElementByTagName("Method");

for (int i = 0; i < nl.getLength(); i++) {
NodeList nl2 = nl.item(i).getChildNodes();
for (int j = 0; j < nl2.getLength(); j++) {

Node node = nl2.item(j);
if (node.getNodeName().equals("ident")) {

System.out.println(
node.getFirstChild().getNodeValue());

} } }

The doc variable indicates a document object of the XS-
DML document generated from the source file.

The standard APIs (e.g., DOM and SAX) are of course
convenient for writing code independent to a specific pro-
gramming language but too primitive for most developers
when they build tools in practice. Accordingly, the develop-
ers tend to write tedious code repeatedly. To avoid this rep-

<Stmt> <Field>

<Local>

<Expr> <Expr sort="MethodCall">

<Expr sort="VarRef">

<Expr sort="CtorCall">

<Param>

JavaStatement JavaField

JavaLocal JavaParameter

JavaCallJavaExpr JavaConstructorCall

JavaVariable JavaVariableList

JavaFieldList

org.w3c.dom.ElementJavaElement

<File>

<Type>

<Package>

<Import>

JavaFile

JavaPackage

JavaImport

JavaType

<Class>

JavaClass JavaClassList

<Method>

JavaMethod JavaMethodList

JavaStaticInit

<SInit>

Figure 5. Java wrappers for XSDML.

etition, Sapid/XML provides several Java wrappers which
have high-level APIs for accessing XSDML documents. In
Figure 5, the rectangles denote the wrappers corresponding
to the XSDML elements depicted in the top of them.

The wrappers are classes tool developers would fre-
quently use and allow them to easily access portions of a
DOM tree in the Java object form. For example, the code
getting a list of classes in the Java source file (indicated by
doc) is as follows:
Element elem = doc.getDocumentElement();
JavaFile jfile = new JavaFile(elem);
JavaClassList clist = jfile.getAllClasses();

In addition, the code outputting the name of all methods
existing in a class is as follows:
JavaMethodList mlist = jclass.getAllMethods();
Iterator it = mlist.iterator();
while (it.hasNext()) {

JavaMethod jm = (JavaMethod)it.next();
System.out.println(jm.getName());

}

The variable jclass is an object of the JavaClass wrap-
per. All wrappers are designed only to extract information
from XSDML documents and never change their contents.
They are also useful samples of writing code that accesses
and manipulates the XSDML documents.

4. Practical Tools Using Sapid/XML

One strength of Sapid/XML is that it structures Java
source code with several tags and embeds additional in-
formation resulting from semantic analysis in the converted

XML documents. By specifying tags in querying and trans-
formation, portions of the code can be accessed and ex-
tracted. Moreover, Sapid/XML neither loses tokens of orig-
inal source code nor adds superfluous texts to the textual
contents of terminal elements when generating XSDML
documents. This feature is convenient for modifying only
the part of source code and retaining the remaining code,
or marking (or highlighting) source code without changing
its appearance. Most source code viewers and editors do
not desire tool platforms to arbitrarily change the contents
of source code (e.g., indentations or the position of braces)
since they have their individual formatters.

To evaluate these benefits, we have developed the fol-
lowing tools.

� A method viewer generating a HTML document listing
the declaration of methods for each class.

� A source code browser generating a browsable code
containing hyperlinked references in HTML form.

� A CFG/PDG constructor producing a control flow
graph (CFG) [14] and a program dependence graph
(PDG) [20] for each method existing in source code.

� A cross-reference extractor collecting link information
about inverse references (e.g., callers of a method) and
relationships (e.g., method override), and producing
XML documents containing the information.

� A refactoring browser restructuring existing source
code without changing its observable behavior.

Due to space limitation, we will explain only the former
three tools in this paper. 2

4.1. Method Viewer

The method viewer is a simple XSLT application. Fig-
ure 6 shows a web browser displaying method declarations
in source code. It was trivial to identify classes, meth-
ods, and constructors since they were marked with Class,
Method, and Ctor in the converted XSDML document,
respectively. Carefully looking at Figure 6, all class (or
type) names in the method declarations were replaced with
fully-qualified ones. Displaying such information is easily
performed by using the value of the fqn attribute of Type
elements instead of their actual names. With Sapid/XML,
tools can obtain various kinds of information about source
code through XML utilities and thus developers can build
such tools without writing much code.

4.2. Source Code Browser

The source code browser is also an XSLT application.
The stylesheet is described in Appendix A. Figure 7 shows

2All of these tools can be downloaded from http://www.jtool.org.

Figure 6. Viewing the declaration of methods.

a view of the generated HTML-based source code. This
stylesheet performs mainly two transformations. One is to
enclose the name (ident) of classes, methods, fields, local
variables with the and
elements. The @defid indicates the value of the defid
attribute of elements owning the sandwiched names.

The other transformation is to find references to classes,
methods, fields, and local variables, and enclose the ref-
erences with <a href="�$relpath��$path�.html
#�@defid�"> and elements. As mentioned in Sec-
tion 3.2, all references in XSDML documents have the
defid attribute, the value of which indicates the target el-
ement and substitutes for @defid. Moreover, global ref-
erences (other than references to local variables) have the
ref attribute which indicates the fully-qualified name of a
class containing the target element. The $path is obtained
through the FqnMap map storing the correspondences be-
tween the fully-qualified name of a class and the name of
a file containing the class. The $relpath denotes a rela-
tive path to the top of directories storing HTML files and is
provided as a parameter of the stylesheet.

Tags except for newly added ones are removed and the
textual contents of all elements are left behind. A signif-
icant point is that the appearance of the restored source
code is the exactly same as that of the original source code.

Figure 7. Viewing HTML-based source code.

Sapid/XML is well suited for creating this kind of tool be-
cause it preserves all tokens of the original source code in
converted XSDML documents.

4.3. CFG/PDG Constructor

The CFG and PDG (or control and data flow) are often
used for creating tools that support software development.
For example, the CFG is useful for eliminating dead code
or code clone, and the PDG is invaluable for debugging or
testing. Program slicing [30] is a famous application using
the PDG, which is widely applied to various fields. Our de-
veloped refactoring browser uses this CFG/PDG construc-
tor. The information about CFGs and PDGs can be obtained
through both XML documents and Java objects.

The CFG consists of a set of nodes and edges. Each
node denotes a statement which is either an assignment or
a condition predicate, which is marked the Stmt or Expr
tag. Each edge represents immediate control flow from a
statement and another one. An example of the generated
CFG is as follows:

<nodes>..
<node no="4" id="s805306373">

<def-var id="s805306373" name="sum"/></node>
<node no="5" id="s826277895">

<use-var id="s805306372" name="n"/></node>..
</nodes>
<edges>..

<edge src="5" dst="6" sort="TrueCtrlFlow"/>
<edge src="6" dst="7" sort="TrueCtrlFlow"/>
<edge src="7" dst="5" sort="TrueCtrlFlow"

loopback="yes"/>
<edge src="5" dst="8" sort="FalseCtrlFlow"/>..

</edges>

The src or dst attribute denotes the value of the no
attribute of a source or destination node, respectively.
The sort attribute is either TrueCtrlFlow (if-then),
FalseCtrlFlow (if-else), or FallThrFlow [16]. The
loopback="yes" means its edge is a back-edge for a
loop. The analyzer of the current version of Sapid/XML
cannot deal with control flow involved in exception. To alle-
viate this problem, a path edge [22] which indicates control
flow for exception handling will be embedded.

Similar to the CFG, the PDG consists of a set of nodes
and edges. Each node corresponds to a node of the CFG
generated from the same source code. Edges denote control
and data dependences. A control dependence edge repre-
sents a control condition on which the execution of a state-
ment depends. Data dependence edge represents flow of
data between statements, which is classified as either loop-
carried or loop-independent [24]. An example of the gener-
ated PDG is as follows:
<nodes>..</nodes>
<edges>..

<edge src="5" dst="6" sort="TrueCtrlDep"/>
..
<edge src="2" dst="5" sort="ParameterIn">

<var id="s805306372" name="n"/></edge>
<edge src="4" dst="6" sort="DefUseDep">

<var id="s805306373" name="sum"/></edge>
<edge src="6" dst="6" sort="DefUseDep">

<var id="s805306373" name="sum" lc="5"/></edge>
<edge src="8" dst="9" sort="ParameterOut">

<var id="s809500674" name="$sum"/></edge>..
</edges>

The sort attribute equals either TrueCtrlDep (true
control dependence), FalseCtrlFlow (false control
dependence), DefUseDep (def-use data dependence),
ParameterIn (def-use data dependence related to an in-
coming parameter), or ParameterOut (def-use data de-
pendence related to an outgoing parameter). The lc at-
tribute in a var element indicates a loop-node carrying the
edge enclosing the var element.

In general, the dependency analysis of the whole pro-
gram is too expensive. Consequently, the current CFG/PDG
constructor does not further analyze the variable appearing
in the primary expression of method invocation or field ac-
cess. Such a variable is considered to be modified and thus
the created PDGs are all conservative. For example, con-
sider the following code:
int x = obj.getX(); int y = obj.getY();

The variable obj indicates an object of the class defin-
ing the methods getX() and getY(). In this case, the

CFG/PDG constructor produces a data dependence from the
first statement to the second statement since the value of
the variable obj is both read and written in each statement.
Precisely, this data dependence is dispensable only if the ex-
ecution of the method getX() never changes the state of
the object obj (e.g., the method does not change the value
of every field but only returns its value).

4.4. Discussion

Each of the former two tools was completed with little
time and effort and comprised small amount of description
(about 46 LOC and 52 LOC, respectively) because we were
able to use an existing XSL processor and wrote code in a
standardized and popular language without learning propri-
etary programming interfaces. The CFG/PDG constructor
demonstrates that Sapid/XML provides sufficient informa-
tion about source code, which is not inferior to that pro-
vided by the AST. Moreover, we confirmed that extending
the original XSDML representation is useful for sharing and
exchanging analyzed information. In fact, one new attribute
was added in order to indicate locations of code fragments
when we developed the cross reference extractor, and one
new tag and one new attribute were used in the refactoring
browser in order to express the changes of source code.

In addition to these tools, a tool allows developers to an-
notate any code fragment by using individual elements or
attributes. For example, a version control tool might desire
to attach information about the modified time to not only
each file but also each method as follows:

<Method modified="Mon Apr 5 10:45:14">..
</Method>

or it might assign an access permission for each method as
follows:

<Method mode="Read-only">..</Method>

Additionally, developers might want to embed a temporary
note that differs from a permanent comment into code.

<Method note="n000000001">..</Method>
..
<note id="n000000001" expire="04/12/2004">
The name of this method was recently changed.
</note>..

In this case, the unparser must be slightly modified and a
proper editor (or viewer) displaying the textual contents of
the added tag is needed to prepare.

5. Experimental Results

The XML representation of source code in general
causes expansion of the file size and processing time be-
cause of its portability and flexibility. To roughly eval-
uate performance of Sapid/XML, we carried out sim-
ple experiments with four programs (Notepad, Stylepad,

Table 2. Size of converted XSDML documents.
Java source file (.java) XSDML file (.xml)

Program
of files LOC Size [bytes] .java.xml [bytes] ratio .class.xml [bytes] Total [bytes]

Notepad 2 1,343 38,805 412,522 10.63 1,239,167 1,651,689
Stylepad 5 2,159 65,245 717,249 11.00 1,433,866 2,151,115
SwingSet2 31 8,617 294,619 3,088,867 10.48 2,193,784 5,282,651
Java2D 62 14,187 509,949 6,355,034 12.46 2,217,521 8,572,555

Table 3. Processing time for conversion and manipulation of XSDML documents.

XML file (.xml) Conversion time [s] Manipulation time [s]
Program

of files # of elements Syntactic Semantic Total Each file Counter Each file Viewer Each file

Notepad 2 20,634 5.444 22.077 27.521 13.761 0.032 0.016 2.250 1.125
Stylepad 5 35,418 9.336 28.793 38.129 7.626 0.034 0.007 4.970 0.994
SwingSet2 31 150,086 59.455 140.051 199.506 6.436 0.068 0.002 27.220 0.878
Java2D 62 308,631 88.526 480.403 568.929 9.176 0.129 0.002 54.940 0.886

SwingSet2, and Java2D) packaged in the Sun Microsys-
tems J2SDK1.4.2.

Table 2 shows the size of the original Java source files
and their converted XSDML files. The size of the con-
verted XML files (.java.xml) is about 10 times (10.63,
11.00, 10.48, and 12.46 times, respectively) larger than that
of original files. This is because our proposed XML rep-
resentation contains various kinds of analyzed information
about the source code. Moreover, Sapid/XML automati-
cally generates summary XSDML documents (.class.xml)
from classes related to Java source files. These files con-
sume much space although they can be shared by respective
programs. The repository size might cause the “out of mem-
ory” problem when Sapid/XML handles a huge program.

Table 3 shows two types of processing time. The con-
version time denotes how long does it take to convert Java
source files into XSDML documents. This time is divided
into two phases: syntactic parsing and semantic analysis.
The manipulation time was measured by using two appli-
cations. The “Counter” application traverses all elements
(tags and attributes) and counts their numbers, which uses
the DOM processor, Xerces2 Java Parser 2.6.2 [13]. The
“Viewer” application generates a browsable source code in
HTML form. It uses the XSL processor, Xalan Java ver-
sion 2.6.0 [12] and the stylesheet described in Appendix A.
The execution was performed on a computer with a Pen-
tium4 2.4GHz CPU and a 640MB of RAM, running Red
Hat Linux9 and Sun Microsystems J2RE1.4.2 01.

The conversion time for each Java source file is about
6 to 14 seconds and is much longer than the general com-
pile time. This main reason is that Sapid/XML uses XS-
DML documents and an XML processor when performing
global semantic analysis. This result might not be critical
to build an application which seldom needs the conversion
(e.g., a source code viewer or a software metrics tool) but it

might be problematic to build interactive tools which need
the frequent reconversion. To reduce the conversion time,
we are planning to adopt the semantic analyzer of sophis-
ticated compilers or modifying existing IDEs to generate
XSDML documents. The manipulation time is considered
as reasonable, which is about 1 second for each file.

6. Conclusion

Tool developers require more extensible and portable
representations of tool platforms. This paper has proposed
the XSDML representation using XML and Sapid/XML
that is a tool platform for managing such representation.
Sapid/XML retains original code fragments in the converted
XSDML documents and inserts the globally analyzed infor-
mation into them. With this platform, the developers easily
build software tools that collaborate with each other.

For the platform to be truly practical, its performance
must be improved and the development of many tools are
needed. From functional points of view, Sapid/XML can-
not replace an existing powerful IDE. Additionally, our pro-
posed XSDML representation is not perfect and should be
refined. We are planning to integrate the XSDML represen-
tation and its converter into popular IDEs (e.g., Eclipse [3]).

The Sapid/XML tool platform and some tools running
on it can be downloaded from http://www.jtool.org.

Acknowledgments

The authors would like to thank Akinori Yonezawa, Et-
suya Shibayama, Kiyoshi Agusa, and all members who
have been engaging the Sapid project. We also thank the
members of the ISR at the University of California, Irvine,
who give us helpful and valuable comments. Finally, we
thank Christopher Van der Westhuizen, Ping H. Chen, and
the anonymous reviewers for their excellent suggestions

that improve this paper. This work was sponsored by the
Information-technology Promotion Agency (IPA), Japan.

References

[1] Byte Code Engineering Library (BCEL).
http://jakarta.apache.org/bcel/.

[2] Document Object Model (DOM).
http://www.w3.org/DOM/.

[3] Eclipse. http://www.eclipse.org/.
[4] Extensible Markup Language (XML).

http://www.w3.org/XML/.
[5] Extensible Stylesheet Language Family (XSL).

http://www.w3.org/Style/XSL/.
[6] GXL: Graph eXchange Language.

http://www.gupro.de/GXL/.
[7] JDOM. http://www.jdom.org/.
[8] Mozilla. http://www.mozilla.org/.
[9] RECORDER. http://recoder.sourceforge.net/.

[10] Semantic Designs, Inc., DMS Software Reengineering
Toolkit. http://www.semdesigns.com/
Products/DMS/DMSToolkit.html.

[11] Simple API for XML (SAX).
http://www.saxproject.org/.

[12] Xalan-Java. http://xml.apache.org/xalan-j/.
[13] Xerces2 Java Parser.

http://xml.apache.org/xerces2-j/.
[14] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-

ples, Techniques, and Tools. Addison-Wesley, 1986.
[15] G. J. Badros. JavaML: A markup language for Java

source code. In Proc. Int’l WWW Conference, May 2000.
http://www9.org/w9cdrom/index.html.

[16] T. Ball and S. B. Horwitz. Slicing programs with arbitrary
control flow. In Proc. Intl. Work. on Automated and Algo-
rithmic Debugging, LNCS 749, pages 206–222, May 1993.

[17] M. Boshernitsan and S. L. Graham. Designing an XML-
based exchange format for Harmonia. In Proc. WCRE’00,
pages 287–289, Nov. 2000.

[18] J. R. Cordy. Generalized selective XML markup of source
code using agile parsing. In Proc. IWPC’03, pages 144–153,
May 2003.

[19] J. Ebert, B. Kullbach, and A. Winter. GraX – An interchange
format for reengineering tools. In Proc. WCRE’99, pages
89–98, Oct. 19991.

[20] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The pro-
gram dependence graph and its use in optimization. ACM
TOPLAS, 9(3):319–349, July 1987.

[21] J. Gosling, B. Joy, and G. Steele. The Java Language Spec-
ification. Addison-Wesley, 1996.

[22] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
test selection for Java software. In Proc. OOPSLA, pages
312–326, Oct. 2001.

[23] R. C. Holt, A. Winter, and A. Schürr. GXL: Toward a stan-
dard exchange format. In Proc. WCRE’00, pages 162–171,
Nov. 2000.

[24] S. Horwitz, T. Ball, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM TOPLAS, 12(1):26–60, Jan.
1990.

[25] J. I. Maletic, M. Collard, and H. Kagdi. Leveraging XML
technologies in developing program analysis tools. In Proc.
Adoption-Centric Software Engineering (ACSE), pages 80–
85, May 2004.

[26] J. I. Maletic, M. L. Collard, and A. Marcus. Source code files
as structured documents. In Proc. IWPC’02, pages 289–292,
June 2002.

[27] E. Mamas and K. Kontogiannis. Towards portable source
code representations using XML. In Proc. WCRE’00, pages
172–182, Nov. 2000.

[28] G. McArthur, J. Mylopoulos, and S. K. K. Ng. An extensible
tool for source code representation using XML. In Proc.
WCRE’02, pages 199–208, Oct. 2002.

[29] J. F. Power and B. A. Malloy. Program annotation in XML:
a parse-tree based approach. In Proc. WCRE’02, pages 190–
198, Oct. 2002.

[30] M. Weiser. Program slicing. IEEE Trans. Software Engi-
neering (TSE), 10(4):352–357, July 1984.

A. XSL Stylesheets (htmlview.xsl)
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:param name="relpath"/>
<xsl:key name="Fqn" match="FqnMap" use="@fqn"/>

<xsl:template match="/">
<html><pre><xsl:apply-templates/></pre></html>

</xsl:template>
<xsl:template match="*|@*">
<xsl:apply-templates select="*|@*|text()"/>

</xsl:template>
<xsl:template match="text()">
<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="Class/ident|Intf/ident|
Method/ident|Ctor/ident|
Field/Expr/ident|
Local/Expr/ident|
Param/ident" priority="1">

<xsl:value-of select="."/>
</xsl:template>

<xsl:template match="Type[@sort=’Object’]/ident|
Expr[@sort=’VarRef’]/ident|
Expr[@sort=’MethodCall’]/ident|
Expr[@sort=’CtorCall’]/ident">

<xsl:choose>
<xsl:when test="@ref">

<xsl:variable name="path"
select="key(’Fqn’,@ref)/@path"/>

<xsl:if test="contains($path, ’.java’)">

<xsl:value-of select="."/>
</xsl:if>
<xsl:if test="contains($path, ’.class’)">

<xsl:value-of select="."/>

</xsl:if>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="."/>
</xsl:otherwise>
</xsl:choose>

</xsl:template>
</xsl:stylesheet>

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

